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the Finite-Element Method

Problems

W. KINSNER, MEMBER, IEEE, AND EDWARD DELLA TORRE,

Abstract—An iterative approach to the finite-element method is

presented. Several finite-element formulations are presented for the

Laplace, Poisson, and Hehnholtz equations. These formulations

permit iterative solutions. The convergence of the vector sequences

generated by the iterative method is accelerated using successive

extrapolation and other methods. Accuracy and convergence of the

solutions are discussed.

I. INTRODUCTION

THE THEORETICAL background of the finite-

element method has been given by Aubin [1].

Other authors [2], [3] have introduced some practical

aspects of the method as applied to structural mechanics.

Sivester [4] and others [5], [16], [20]-[22] discussed

the method as applied to the electromagnetic field prob-

lems. Convergence of the method, as a function of the

relative size of the discretizing elements and the order of

the approximating polynomials, is discussed in many

recent mathematical and technical journals [6]. In

particular, explicit discretization errors are given in [1],

[2], [6], and [7], and some experimental results are given

in [5] and [8].

The variational formulation of waveguide problems,

using complete polynomials, leads to the general eigen-

value problem

AX = xl?% (1)

where A and B are symmetric positive-definite n x n

band matrices, A is the eigenvalue (s) and x the eigen-
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with the particular eigenvalue (s).

It is noted that for the H modes A k only semidefinite.

The finite-difference formulation of these problems also

leads to (1), however, the matrix B is the identity matrix,

and A k not necessarily symmetric.

A variety of methods for solving (1) have been pre-

sented (e.g., [9], [10], and [12]). The finite-difference

solutions most frequently employ iterative techniques

and the finite-element solutions almost exclusively use

dwect methods.

Iterative methods for solving eigenvalue problems may

be divided into two categories. The first methods use the

fact that eigenvectors of a system form a linearly inde-

pendent set which spans an n dimensional space. The

methods in the second category use the property that the

generalized Rayleigh quotient

XTA X
Q=—

XTBX
(q

is equal to an eigenvalue and is stationary when x is the

corresponding eigenvector. A method using this property

with Fletcher–Powell iteration has been described [13].

These methods combined with the deflation or ortho-

gonalization yield, however, only partial eigensolutions,

i.e., the dominant and several closest eigenvectors, An

iterative method for the complete eigensolution shall be

presented.

II. FINITE-ELEMENT FORMULATION

Let R be either a simply or multiply-connected bounded

region in an n dimensional space V“ with boundar,y r.

The boundary 1? consists of a finite number of closed,

nonintersecting hypersurfaces rl, (h = O, ..”, ~) such
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that rh G I’. Fig. 1 shows a two-dimensional nonconvex

multiply-connected region R.

It can be shown [14] that the solution of the inhomo-

geneous Helmholtz equation V’P + hp = g, subject to the

associated natural boundary conditions, p (dp/tM) equal

to zero [18, p. 208], [19], is equivalent to minimizing the

following functional:
.

F=:// (1 Vp 1’ + kp’) dR – //pgdR (3)

R R

where p is the function that is sought, g is the correspond-

ing source density function, and A is a constant. Instead

of finding the true p over R the finite-element formulation

employs, in general, the subdomains E. such that each

E. C R. Any proper assembly of elements into a con-

nected model R gives an approximate global solution ~

over the region R. It is possible to develop different

finite-element schemes for the same problem. In the

iterative solutions, a proper embedding of the elements

expedites the iteration processes.

The discrete model of R is constructed in several steps.

First, a finite number N of global nodes is identified in R

and labelled P. (g = 1, 2, “ o”, N). These points Ray lie
in R or on r, and are contained in another region R, with

boundary ~, which approximates R. Then, a finite number

M of elements E. is defined on the global points. Now,

each element is a closed region, and the elements are

disjoint. The global nodes associated with a given element

are called the local nodes PZ (1 = 0,1, . . . . L). Assembling

the elements into ~ completes the process. This assembly

employs a grouping of m elements adjacent to a specific

node. There may be J adjoining nodes. The procedure for

developing a finite-element model function @ of a con-

tinuous function p is closely related to that for R since R

is the domain of the function 4.

For simplicity, the paper will consider only

mensional regions and triangular elements in

YI .

two-di-

homo-

.

/
r2-=-

/
/

/’”
!

Fig. 1. A general nonconvex two-dmensional multiply connected
region with two types of boundary, placed in global coordinates
X, Y. Triangulation of the region with M elements and N global
nodes. Local coordinates x, y are connected with an element E..

geneous isotropic media. The finite-element model

function & within an element shall be represented by the

first-order complete polynomial of the form

where x and y are the local Cartesian coordinates, and the

a’s are coefficients to be determined by the finite-element

formulation.

A. Laplace’s Equation

When h = O and g = O, the differential equation re-

duces to the Laplace equation. The functional (3) is then

reduced to

(5)

E

In this section, a formula is obtained which minimizes

(5) and depends only on the angles of the triangular

elements.

Let E. be a triangle in ~ with vertices and their associ-

ated angles, as shown in Fig. 2. The subscripts of all the

entities in Fig. 2 refer to a triangle in ~ and, at the same

time, to a triangle in a group of adjoining triangles (see

Fig. 1). The local coordhates are located with the z

coordinate coincident with loj, and y coordinate inter-

secting node Po. When 00 is perturbed and all other nodal

values are kept constant, the functional changes only in

the m triangles adjoining node Po. If one denotes by Fo

the part of the functional associated with these triangles

then

Fo = ~ [1 V4r 1’ + [ V@u121Ai (6)
+1

where V4i is the component of the gradient in the i direc-

tion (i = Z,Y), and .4j is the area of the triangle. For the

specific nodal point Po, one can write

Note that the x component of the gradient vanishes in (7)

/
I \

+j-f(.,, AY \
\ ‘.
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Fig. 2. One of rn triangles adjacent to a node P,. The origin of local

cooidlnates lies on P1P2.
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since it is constant for thk perturbation. This leads to

where ko is a constant for a collection of adjoining triangles

(all k’s may be computed once for a given geometry),

and oj, I#Ii+l are the nodal values of the approximating

function &.

It is readily seen that, if $j = & for all j, then (8) re-

duces to

(9)

which is identical to the finite-cliff erence formula for an

equilateral polygonal mesh. For the square mesh shown in

Fig. 3, (8) becomes the ordinary 5-point Laplacian

operator for all nodes no matter how the triangulation of

R is performed, and the value I#JOis the average of the four

adj scent values. This implies that the optimum inter-

polation formula for a finite-difference solution using

the 5-point operator is the linear interpolation formula. It

is noted that there are many different linear interpolations

for a given set of nodes as shown in Fig. 3, however, the

optimum values for the nodes is the same in all these

cases. For a solution of a given problem, a consistent

manner of interpolation must be used over the whole

region R.

B. Poiswn’s Equatian

For Poisson’s equation, the functional (3) to be min-

imized for natural boundary conditions reduces to

R R

Since a variation of the function & at a specific node can

only effect the energy in the m adjoining triangles then,

to minimize the functional, it is sufficient to consider these

triangles only. Thus

(11)

where Tj and Sj correspond to the first and the second

integral. It can be shown that

2&o=l#Jo
where the constants

triangle, are given by

(a) (b)

Fig. 3. Five-point Laplacian operators resulting from various
triangulations of the region. (a) Two types of nodes with 4 ad-
jacent triangles 0 and 8 adjacent triangles ❑ . (b) one type of
node with 6 adj scent triangles.

(:13b)

(14)

where ko is a constant which may be computed once for a

group of adjoining triangles in numerical solutions. Sub-

stituting (12) and (14) into (11 ) gives

For a square grid with a mesh length h, (15) reduces to a

5-point operator

@O = +[@l + 42 + #% + 44 + h2g]. (16)

C. Helmholtz’s Equation

Similarly, for Helmholtz’s equation it can be shown that

the potential +, at an arbitrary global node P. expressed

in terms of both the potentials at the adjacent nodes and

the local (or global) coordinates of these nodes is given by

1
do =

% (kiil – Mjs)

j=l
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where

t

kjll = -& [(X2 — X1)2 + (yz — ‘@z], VEj (18a)
j

kjz = ~A j

kjlz = ~kls

and the area of the triangle is

Aj = ~(x1y2 _ X#l)j VEj.

Equations (18a) - ( 18c) are analogous to

in the simplified positioning of the triangle.

For clarity, (17) may be rewritten as

Al%3– lq
@o=

kl – MO

where

kl = ~ lcjO
*1

kz (o) =: (r#uki, + bkjz)
f=l

For an internal node of a

Fig. 4, (21) reduces to

kl=4

kO = ~ kj3
+1

m

VEj (18b)

VEj (18c)

(18d)

(18e)

(19)

(13a) -(13c)

(20)

(21)

h (o) = Z (OI + &) j~jlz.
j=l

periodic lattice, as shown in

(22a)

kz(f+) = – (C/),+4)2 + I& +@,) (22b)

?cO= ~h2 (22C)

ks(+) = ;(01 +02 +% + @4 +45 + ‘#6)k0 (Zzd)

and (20) then yields

(23)

It is seen that if ~~=1 @ is approximated by 640 then (22)

becomes identical to the 5-point finite-difference operator

(24)

which in turn is a special case of a more general finite-

difference approximation when (o1 + 4v) kjlz x ~Okj8.

Fig. 4. A seven-point finite-element operator for the dominant
solution of Helmholtz’s equation.

111. ACCELERATION OF CONVERGENCE

Two general approaches exist to the problem of ac-

celerating the convergence of the finite-element method to

reduce the computation time required for a complete or

partial eigensolution to a given accuracy. The first one

refers to accelerating the direct solution of A o = M?+ as

given in existing programs [8] and the other refers to ac-

celerating the iterative methods as described in the

previous section.

It is noted that convergence is understood here as the

diminishing of some norm of an error between the initial

solution and the approximate solution @on R rather than

between # and the t?ue solution P on R when either the

largest side or the minimum angle of all of the triangles is

varied.

A. Wilkinson’s Algorithm

In the first approach, the most efficient algorithm [17]

for obtaining eigenvalues of the generalized matrix eigen-

value problem, in which the matrices are of a band type

and only specific eigenvalues are required, should be used

i~ the direct methods. The eigenvectors are then computed

by the Wielandt inverse iteration [11, p. 321].

B. Successive Extrapolation

The other technique relates to accelerating convergent

vector sequences generated by iterative methods. Such

sequences have been investigated [24], [25]; and a suc-

cessive extrapolated relaxation technique has been pro-

posed for accelerating their convergence [23]. After every

third iteration, a modification of Aitken’s & process is

used to extrapolate the linearly convergent vector se-

quence to its limit. Extrapolation is improved if the rate

of convergence of the original sequence is known. There-

fore, more efficient extrapolation can be employed if the

rate is estimated during the iteration process. This

scheme of nested iteration is terminated when a specific

error criterion is met.

When a linearly convergent vector sequence oscillates
globally or locally then the effectiveness of the successive

extrapolation method decreases. However, it has been

shown [25] that if thk method cannot improve the con-
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vergence of the original sequence then it does not de-

celerate it. Both oscillations and their frequencies of the

vector sequences depend on the eigenvalues of matrices

involved in the processes generating these sequences. If

the eigenvalues are complex then a vector sequence

oscillates. The successive extrapolation process [24]

improves convergence of such sequences providing the

period of the oscillations is longer than 5–10 iterations.

These frequencies are often lower in the iterative processes

[26].

as fast asSOR [27]. Young [15] estimates an order faster

convergence when this type of acceleration is applied to

some methods. A serious limitation on this method is posed

by the lower bound a for pi [14, p. 228]. It is easy to find

a close estimate to the upper bound b but determination of

a is very difficult. It appears that the effectiveness of the

method depends mainly on a.

D. Gmdient ikfethods

Let f(~) be a quadratic function defined by

C. Chebyshev Acceleration f(~) Q &A@ – 2&b + bTA-’b (29)

When some information concerning the distribution of where $T denotes transpose of $, and A and b correspond

the eigenvalues pi of the iteration matrix .Q is available, to the quantities in Ax = b. When A is symmetric and

and the eigenvalues are real then the Chebyshev poly- positive definite then the ~(~) takes its minimum value,

nomials [15, p. 301] can be used to accelerate the con- zero, at A–lb. Various minimization methods of j(~)

vergence of different methods such as the Jacobi, suc- have been discussed [28]. Interesting combinations of

cessive overrelaxation (SOR), Richardson’s, and various iterative methods (accelerated Jacobi, SSOR) with some

second-degree iterative methods [15]. This method simple gradient methods and with the Chebyshev ac-

assumes the convergence of a vector sequence upon which celebration have been dkcussed, and corresponding nu-

it should act. The strategy is to find a function which merical results on the blharmonic operator have lbeen

would not only describe the convergence property of the presented [27]-

vector sequence based on the eigenvalues of $ but, at the The major feature of some of the gradient iterative

same time, would cause some acceleration of the con- methods is that they lead to the solution in a finite

vergence by projecting the terms of the sequence towards number of steps. One can use this powerful feature of’ the

its limit. Since for a convergent sequence the spectral gradient methods by combining the best minimization

radius of $ has to be less than one, then the Chebyshev techniques (see [28]) with the finite-element methocl for

polynomials offer the means of weighting the projections. Laplace’s and Poisson’s equations or several eigensolutions

When the eigenvalues /.li are distributed between O < of the Hehnholtz equation. Such a combined method

I pi I < I a I <1 where a is a constant then the appropriate should start from a direct or iterative solution of the

linear combinations of some terms of the vector sequence finite-element equations. The process then could proceed

{4} may be obtained by means of the three-term recur- with an iterative refinement by a finite-difference method

rence relation on a fine mesh, however, this intermediate step is not

necessary. Finally, the process could use one of the ef-
+(.+,) = +(.) + ~;:;’a;) [@n) – @.-2)] (2!j) ficient gradient methods to find the minimum of (29) or

72 another objective function associated with the given

where ~(n) is the vector obtained by the iterative process problem. These minimization iterations would start from

and T. is the Chebyshev polynomial of degree n in x de- an initial vector close to the solution thus the minimum

fined by T.(z) = cos (n COS–’ x) in the range I z I < 1. would be obtained quickly and the process wouldl be

The Chebyshev acceleration of Richardson’s method reliable since (29) represents, in this case, a set of con-

~(~+11 = +(n) + ~GO@
centric hypersurfaces. It is noted, however, that the very

(26) efficient gradient methods require existence of the first

where W) is the residual vector at nth iteration, has the and second derivatives of a function. The model function ~

form of the second-degree Richardson’s method constructed in the finite element is continuous, but the

+(n+l) = +(.) + fi(n) ~(n) + +n)a(n)
first derivative is discontinuous at the boundary betvreen

127) the elements, thus the second derivative may be inde-

where ~(”) = ~@ — @(”–l) is the displacement vector and terminate at these boundaries. This restriction can be re-

the coefficients are given by moved by redefining the function to be continuous ‘~th

continuous derivatives. This model of G describes the

~(n) . L cosh nt cosh (n — l)t

b – acosh (n+ l)t
@ = actual p more accurately than the finite-element mc)del,

cosh (n + l)t and, therefore, the gradient vector containing the first

(28)
partial derivatives and the Hessian matrix with second

partial derivatives can be constructed.
where cosh t = (b + a)/ (b — a), and a, b are the smallest The number of iterations can be reduced considerably
and largest eigenvalues of S. This process is nonstationary when using the gradient methods but the amount of work
since the values of B and y depend on n. involved in computing the gradient vector and the

The Chebyshev acceleration of SSOR when applied for Hessian matrix may actually decrease the eficiency of the
a biharmonic problem causes its convergence to be twice method below that of other simpler methods.
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E. Mesh Refinement

Another teclmique for accelerating the convergenceis

mesh halving. In general, an application of bisection to all

the sides of triangles or rectangles as shown in Fig. 5

leadsto a finer mesh. Since the co~vergence depends on

the starting values at the nodal points then aquicksolu-

tion ona coarse mesh with a small number of nodes can

serve m the starting values for the next cycle of iterations,

This mesh halving can be repeated, leading to a better

first approx~ationto p (see next section). The solution

obtained by mesh halving is faster than that carried on the

finer mesh only.

The advantage of using bisection rather than other

techniques of the mesh refinement is that the bisection

maintains the same angles in the new elements. This fact

removes the necessity of recomputing all the coefficients k

in (8). The “old” nodes have exactly the same k’s, and the

coefficients for the’ ‘new” nodes are chosen from the old k’s.

Suppose the, discretization error of the particular

algorithm used in the finite-element solution of p is of

order II h IIP where II h II is the Chebyshev or some other

norm of the side length of all the triangles, and p is some

number. Let { ~k } be a sequence of solutions, generated by

the same algorithms, using a corresponding sequence

{ h~) of decreasing h on the same region ~. When {hk } -+ O

then { d~ ) ~ P. Since { ~~ } converges monotonically to

p the following relation holds:

(30)

where the discretization error vector ek at kth subdivision

of the elements is given by ek = ~= — +k.

Any norm of ek, including the vector itself, satisfies

(30) since p depends on the choice of the norm. Hence

one can extrapolate the ‘sequence { ~k } from two or more

successive solution vectors & obtained on two or more

triangulations with decreasing

only two solutions (k = 1,2)

extrapolation formula

size of the elements. For

one obtains the following

Fig. 5. Element subdivision by bisection of its sides.

where & indicates the extrapolated vector, not necessarily

p. This difference is caused by various factors affecting

{ ~k ) such as the cumulative roundoff errors, and the
residual error of ~~. A better extrapolation formula results

from three solutions (k = 1,2,3)

,$E = +1~1 + +2s2 + $,s3 (32)
S1+S2+S3

where

(33)

and 1, m, n are even permutation of 1,2,3.

The extrapolated values +~ do not, in general, result in

p even though p is known in advance. However, when the

cumulative roundoff error is small and when the change

in II hk II is appropriately chosen, then a significant im-

provement in accuracy is achieved by this extrapolation.

An assessment of p will be given in the following section.

IV. ACCURACY AND CONVERGENCE

At the beginning of the previous section, two concepts of

convergence were introduced: 1) the convergence of $

to p, and 2) the convergence of successive estimates of

o to the model function solution & Similarly, there are

two types of errors: 1) the accuracy of the model function

O, related to the original function p, i.e., discretization

error, and 2) the accuracy of the estimate solution ~(n)

with respect to the actual function ~, i.e., residual error.

This distinction has been neglected in some cases and the

finite-element results presented were not as accurate as

expected [29].

A. Discretization Error

Recall that, by assumption, the function p is continuous

with continuous partial derivatives in a region R bounded

by I’. When triangulation of ~ is employed and the first-

order polynomial is used to approximate p within each

triangle then the model polyhedral function d is con-

tinuous with continuous first derivatives withh each

triangle and discontinuous at junctions between the

triangles. The second partial derivatives vanish within
each triangle and may be, in general, infinite at the

junctions. We shall now show that a given function p

and its first partial derivatives may be approximated

arbitrarily closely by a polyhedral function @based on a

suitable traingulation of R.

The strategy of assembling@ (see Section II) guarantees

the continuity of $ and an appropriate “fitting” of’+ to p.

Therefore, only an arbitrary closed triangular element

Ee is considered in the proof. Let E. C R and the vertices

P, (zi,vi) < -Z. Let @i c P, that is, the values of the model
function at the vertices coincide with the exact function p.

This result is obtained by minimization of the functional
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(5) for each nodal point and for the linear interpolation

over E.. For higher approximations more points have

to satisfy this coincidence cond~tion. It is noted that this

minimization process is similar to the least squares. It

might be possible to construct another functional (ob-

jective function) whose least pth minimization could

lead to a better approximation.

If one defines h and o as the largest side and the largest

angle of all triangles being associated with one triangle,

then it can be shown that the following conclusions hold:

the approximation for the derivatives is of order h

lW-d19-&#h (34)

and the approximation for the function is of order h2:

b$–+S--&-#h2 (35)

where M >0 is a bound on p“. Equations (34) and (35)

indicate that the function p and its derivatives p’ can be

approximated by the first-order polynomials based on a

triangular mesh arbitrarily close by taking a sufficiently

fine triangulation. It is noted that thin triangles give poor

approximation, since cos *e -+ O.

Equation (35) shows that the approximate solution @

converges to the exact solution p with the same order of

the convergence rate as in the case of the finite-difference

approximation. However, there is an important difference

between the two methods, evident from this analysis,

that is, this order of the convergence rate requires a

bounded second derivative of p whereas, in the iinite-

difference formulation, a bound on the third-order deriva-

tive is required.

Equation (35) can be generalized by removing the

assumption that the largest angle 0 is associated with the

triangle having the longest side. In this case, however, the

derivation becomes complicated since the convergence

has to be expressed in terms of a noti in the Sobolev

space of functions having generalized derivatives up to the

order k inclusive, on a compact support [1, p. 138].

Using these norms, following Zhimal’s approach [6], it

can be shown that for second-order finite-element ap-

proximation to the generalized second-order partial

differentiation equations the following is true:

(36)

where the constant k does not depend on the triangulation,

v is the smallest angle of all triangles, h is the largest

side of all triangles, and the subscript at M indicates the

order of the derivatives that have to be bounded. The

subscript S indicates a norm in the Sobolev sense.

The approximation by cubic polynomials leads to the

following:

(37)

For the same problems, the finite-difference formulation

gives the convergence rates of the order of h and h2, re-

spectively.

For the biharmonic equation approximated by the

fifth-order polynomial one gets

llf#J-Pllss~— Si:,v M&4. (38)

It is noted that the largest angle 0 in (35) can describe

a triangle better than the smallest angle v, since the 1atter

indicates one small angle only, whereas the former always

implies two small angles when 0 -+ 180°.

B. Residual Error and Error Criteria

In order to terminate an iterative process at some

accuracy it is necessary to determine some measure c~fthe

error. The simplest measure of the error is the residual

measure eR which indicates the fractional deviation of
~~(.) from zero at nth iteration

(39)

This ratio employs the Euclidean norms with sieving

function, and it can be shown that it reduces to

Another measure is defined by

It shows the flux imbalance between the flux calculated

along the entire boundary r and the flux which enters the

region across ri.

Since the exact solution e is not known in general, it is

impossible to relate the error norms eR and eF to an error

norm of the exact solution, e.g.,

e,= IIw) – !?Il
IIQII

(42)

nevertheless some test problems for which the exact

solution is known can qualitatively relate (40) and (41)

to (42). The knowledge of this relation may be applied

to other problems. It has been experimentally founcl [5]

that, for homogeneous and inhomogeneous Dirichlet,

Cauchy, and Neumann problems, t?R and eF are approxi-

mately proportional to eP, and they decrease when the

order of the approximating polynomial increases.

V. CONCLUSIONS

An iterative approach to the finit~element method has

been presented in which no matrices and essentially only

the solution vector has to be stored. The relationship

between the finite-element, the finite-difference, and the

gradient methods is discussed.

Various techniques have been discussed for accelerating
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the convergence of the vector sequence to its limit which is

the exact solution to the modeling problem (residual

error), and accelerating the convergence of the sequence of

modeling solutions to its limit which is the exact solution

of the field problem (discretization error). Of these

tectilques successive extrapolation is the most effective

in obtaining the limit of a vector sequence. In order to

obtain the limit of the sequence of modeling function

one must use successive mesh refinement. A technique for

element subdivision is presented which introduces new

elements with no new angles thereby simplifying the ob-

taining of the coefficients of the new assembly matrix

whose order is twice that of the original assembly matrix.

A discussion of discretization shows that the con-

vergence rate varies as h2. This permits to obtain an

optimal extrapolation technique for estimating the exact

solution with finite size elements.
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