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An lterative Approach to the Finite-Element Method
in Field Problems

W. KINSNER, MeMBER, IEEE, AND EDWARD DELLA TORRE, SENIOR MEMBER, IEEE

Abstract—An iterative approach to the finite-element method is
presented. Several finite-element formulations are presented for the
Laplace, Poisson, and Helmholtz equations. These formulations
permit iterative solutions. The convergence of the vector sequences
generated by the iterative method is accelerated using successive
extrapolation and other methods. Accuracy and convergence of the
solutions are discussed.

I. InTrRODUCTION

HE THEORETICAL background of the finite-
element method has been given by Aubin [17.
Other authors [27], [3] have introduced some practical
aspects of the method as applied to structural mechanics.
Silvester [4] and others [5], [167], [20]-[22] discussed
the method as applied to the electromagnetic field prob-
lems. Convergence of the method, as a function of the
relative size of the discretizing elements and the order of
the approximating polynomials, is discussed in many
recent mathematical and technical journals [6]. In
particular, explicit discretization errors are given in [17,
[27, [6], and [7], and some experimental results are given
in [5] and [8].
The variational formulation of waveguide problems,
using complete polynomials, leads to the general eigen-
value problem

Ax = \Bx (1)

where A and B are symmetric positive-definite n X n
band matrices, A is the eigenvalue(s) and x the eigen-
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vector(s) associated with the particular eigenvalue(s).
It is noted that for the H modes A is only semidefinite.
The finite-difference formulation of these problems also
leads to (1), however, the matrix B is the identity matrix,
and A is not necessarily symmetric.

A variety of methods for solving (1) have been pre-
sented (e.g., [9], [10], and [127). The finite-difference
solutions most frequently employ iterative techniques
and the finite-element solutions almost exclusively use
direct methods.

Iterative methods for solving eigenvalue problems may
be divided into two categories. The first methods use the
fact that eigenvectors of a system form a linearly inde-
pendent set which spans an » dimensional space. The
methods in the second category use the property that the
generalized Rayleigh quotient

xTAx
xTBx

is equal to an eigenvalue and is stationary when x is the
corresponding eigenvector. A method using this property
with Fletcher-Powell iteration has been described [137.
These methods combined with the deflation or ortho-
gonalization yield, however, only partial eigensolutions,
ie., the dominant and several closest eigenvectors. An
iterative method for the complete eigensolution shall be
presented.

II. FiNniTE-ELEMENT FORMULATION

Let R be either a simply or multiply-connected bounded
region in an n dimensional space V* with boundary T.
The boundary T' consists of a finite number of closed,
nonintersecting hypersurfaces T, (A = 0, ---, 7) such
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that I'y € T. Fig. 1 shows a two-dimensional nonconvex
multiply-connected region E.

It can be shown [147] that the solution of the inhomo-
geneous Helmholtz equation V2o + \p = g, subject to the
associated natural boundary conditions, p(dp/dn) equal
to zero [18, p. 2087, [19], is equivalent to minimizing the
following functional:

=_21_ff(|vp|2+xp2)dR—f/png (3)
& R

where p is the function that is sought, g is the correspond-
ing source density function, and X is a constant. Instead
of finding the true p over R the finite-element formulation
employs, in general, the subdomains K, such that each
E. C R. Any proper assembly of elements into a con-
nected model R gives an approximate global solution ¢
over the region R. It is possible to develop different
finite-element schemes for the same problem. In the
iterative solutions, a proper embedding of the elements
expedites the iteration processes.

The discrete model of R is constructed in several steps.
First, a finite number N of global nodes is identified in R
and labelled P,(g = 1, 2, ---, N). These points may lie
in B or on T, and are contained in another region B, with
boundary T, which approximates K. Then, a finite number
M of elements E, is defined on the global points. Now,
each element is a closed region, and the elements are
disjoint. The global nodes associated with a given element
are called the local nodes P;(I = 0,1, ---, L). Assembling
the elements into R completes the process. This assembly
employs a grouping of m elements adjacent to a specific
node. There may be J adjoining nodes. The procedure for
developing a finite-element model function ¢ of a con-
tinuous function p is closely related to that for B since B
is the domain of the function ¢.

For simplicity, the paper will consider only two-di-
mensional regions and triangular elements in homo-
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Fig. 1. A general nonconvex two-dimensional multiply connected
region with two types of boundary, placed in global coordinates
X, Y. Triangulation of the region with M elements and N global
nodes. Local coordinates z, y are connected with an element E..
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geneous isotropic media. The finite-element model
function ¢, within an element shall be represented by the
first-order complete polynomial of the form

(4)

where z and y are the local Cartesian coordinates, and the
o’s are coefficients to be determined by the finite-element
formulation.

b = a1 + o + oy

A. Laplace’s Equation

When A = 0 and ¢ = 0, the differential equation re-
duces to the Laplace equation. The functional (3) is then

reduced to
=2 [[ 1 volrai.
2
R

In this section, a formula is obtained which minimizes
(5) and depends only on the angles of the triangular
elements.

Let E, be a triangle in B with vertices and their associ-
ated angles, as shown in Fig. 2. The subscripts of all the
entities in Fig. 2 refer to a triangle in R and, at the same
time, to a triangle in a group of adjoining triangles (see
Fig. 1). The local coordinates are located with the z
coordinate coincident with l;, and y coordinate inter-
secting node Py. When ¢y is perturbed and all other nodal
values are kept constant, the functional changes only in
the m triangles adjoining node P,. If one denotes by F,
the part of the functional associated with these triangles
then

(5)

Fo= 301 Vée |t + | Vo, [F14; )

~1
where V¢; is the component of the gradient in the ¢ direc-
tion (¢ = x,y), and 4, is the area of the triangle. For the
specific nodal point Py, one can write

oF oF, ™ Ve,
d¢o Iy E Ao b @

Note that the 2 component of the gradient vanishes in (7)

Fig. 2. One of m triangles adjacent to a node Po. The origin of local
cooidinates lies on PiP,.
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since it is constant for this perturbation. This leads to

> (¢; cot B, + pjya cot &)

1

¢0 =
2. (cot B, + cot &)

=1

IMs

(¢J J+1 + ¢J+1k ) (8)

ol

where k, is a constant for a collection of adjoining triangles
(all ¥’s may be computed once for a given geometry),
and ¢, ¢;.1 are the nodal values of the approximating
function ¢,.

It is readily seen that, if 8; = &; for all 7, then (8) re-
duces to

> ¢

=1

o= (©)
m

which is identical to the finite-difference formula for an
equilateral polygonal mesh. For the square mesh shown in
Fig. 3, (8) becomes the ordinary 5-point Laplacian
operator for all nodes no matter how.the triangulation of
R is performed, and the value ¢, is the average of the four
adjacent values. This implies that the optimum inter-
polation formula for a finite-difference solution using
the 5-point operator is the linear interpolation formula. It
is noted that there are many different linear interpolations
for a given set of nodes as shown in Fig. 3, however, the
optimum values for the nodes is the same in all these
cases. For a solution of a given problem, a consistent
manner of interpolation must be used over the whole
region R.

B. Poisson’s Equation

For Poisson’s equation, the functional (3) to be min-
imized for natural boundary conditions reduces to

=%//|V¢[2dR—//¢ng.

Since a variation of the function ¢, at a specific node can
only effect the energy in the m adjoining triangles then,
to minimize the functional, it is sufficient to consider these
triangles only. Thus

oF i

> (i) =0

260 1_16¢0 (r; + 85)
where r; and s; correspond to the first and the second
integral. It can be shown that

(10)

(11)

n0
& = ¢o Z ko + E (drkjs + okye)
=1 6(}50 =1

where the constants kj;, which are different for each
triangle, are given by

(12)
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Fig. 3. Five-point Laplacian operators resulting from various
triangulations of the region. (a) Two types of nodes with 4 ad-
jacent triangles O and 8 adjacent triangles 0. (b) One type of
node with 6 adjacent triangles.

1
ks = 14, Ll — y2)? + (22 — 21)%] (13a)
1 -
kn = 1A, Cln—w2) (g — w0) + (22— @) (20 — @2) ]
(13b)
kjp = E Clys — 92) (Yo — y1) + (22 — 1) (21 — 20) ]
(13¢)
where A; is the area of a triangle. Also
. 08,
— = 14
Z; Py (14)
where k, is a constant which may be computed once for a
group of adjoining triangles in numerical solutions. Sub-
stituting (12) and (14) into (11) gives
¢ = 1+ doki) + kol (15)

i=1

> ki
=1

For a square grid with a mesh length %, (15) reduces to a
5-point operator

¢ = [ + &2 + o5 + o0+ P29 (16)

C. Helmholiz’s Equation

Similarly, for Helmholtz’s equation it can be shown that
the potential ¢, at an arbitrary global node P, expressed
in terms of both the potentials at the adjacent nodes and
the local (or global) coordinates of these nodes is given by

1
do =

3 (eip — Meja)

=1

- S Mo+ ki — (duka + k)] (17)

=1
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where
1 1
kjo = — [(22 — 21)2 + (3. — y1)2], VE; (18a)
44;
-1
kj = A [ — )2 + (Y2 — )y, VE; (18b)
; :
-1
ko = —= [(z1 — @) + (11 — ¥2) 1, VE; (18¢c)
44;
ki = §A; (18d)
kjlg == %k,:,‘ (186)
and the area of the triangle is
A; = 3(oye — 291),  VE; (19)

Equations (18a)~(18¢) are analogous to (13a)—(13¢)
in the simplified positioning of the triangle.
For clarity, (17) may be rewritten as

Ao — Ky
¢o = T — Mo (20)
where
k1 = Z kjo ko = Z kja (21)
=1 =1

ke(d) =2 (dikn + doks) ks(¢) = 25 (¢1 + 2) ikina.
F=1 J=1
For an internal node of a periodic lattice, as shown in
Fig. 4, (21) reduces to

kl =4 (223,)
ka(¢) = — (1 + ¢ + ¢ + o) (22b)
ko = 3h? (22¢)

ks(¢) = 5(d1+ o + ¢ + du + 5 + o) ko (22d)
and (20) then yields

1

h2?
d’O:m[ﬁ)‘<¢l+¢2+¢3+¢4+¢5+¢6)

+¢1+¢2+¢3+¢4]

“s=w
8 — Nt

A2
+ s (¢ + ¢6)] .

e
- %)(dh + ¢ + ¢ + é4)

(23)

It is seen that if Y3, ¢, is approximated by 6¢, then (22)
becomes identical to the 5-point finite-difference operator

1
do = ——— (¢n + ¢ + ¢ + ¢o) (24)

4 — B2

which in turn is a special case of a more general finite-
difference approximation when (¢1 + ¢2)kire = dokjs.
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Fig. 4. A seven-point finite-element operator for the dominant
solution of Helmholtz’s equation.

III. AcceELERATION OF CONVERGENCE

Two general approaches exist to the problem of ac-
celerating the convergence of the finite-element method to
reduce the computation time required for a complete or
partial eigensolution to a given accuracy. The first one
refers to accelerating the direct solution of A¢ = AB¢ as
given in existing programs [8] and the other refers to ac-
celerating the iterative methods as described in the
previous section.

It is noted that convergence is understood here as the
diminishing of some norm of an error between the initial
solution and the approximate solution ¢ on R rather than
between ¢ and the true solution p on R when either the
largest side or the minimum angle of all of the triangles is
varied.

A. Wilkinson’s Algorithm

In the first approach, the most efficient algorithm [17]
for obtaining eigenvalues of the generalized matrix eigen-
value problem, in which the matrices are of a band type
and only specific eigenvalues are required, should be used
in the direct methods. The eigenvectors are then computed
by the Wielandt inverse iteration [11, p. 321].

B. Successtve Extrapolation

The other technique relates to accelerating convergent
vector sequences generated by iterative methods. Such
sequences have been investigated [24], [25], and a suc-
cessive extrapolated relaxation technique has been pro-
posed for accelerating their convergence [237]. After every
third iteration, a modification of Aitken’s 8% process is
used to extrapolate the linearly convergent vector se-
quence to its limit. Extrapolation is improved if the rate
of convergence of the original sequence is known. There-
fore, more efficient extrapolation can be employed if the
rate is estimated during the iteration process. This
scheme of nested iteration is terminated when a specific
error criterion is met.

When a linearly convergent vector sequence oscillates
globally or locally then the effectiveness of the successive
extrapolation method decreases. However, it has been
shown [257] that if this method cannot improve the con-
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vergence of the original sequence then it does not de-
celerate it. Both oscillations and their frequencies of the
vector sequences depend on the eigenvalues of matrices
involved in the processes generating these sequences. If
the eigenvalues are complex then a vector sequence
oscillates. The successive extrapolation process [24]
improves convergence of such sequences providing the
period of the oscillations is longer than 5-10 iterations.
These frequencies are often lower in the iterative processes

[267].
C. Chebyshev Acceleration

When some information concerning the distribution of
the eigenvalues p; of the iteration matrix £ is available,
and the eigenvalues are real then the Chebyshev poly-
nomials [15, p. 3017] can be used to accelerate the con-
vergence of different methods such as the Jacobi, suc-
cessive overrelaxation (SOR), Richardson’s, and various
second-degree iterative methods [15]. This method
assumes the convergence of a vector sequence upon which
it should act. The strategy is to find a function which
would not only deseribe the convergence property of the
vector sequence based on the eigenvalues of £ but, at the
same time, would cause some acceleration of the con-
vergence by projecting the terms of the sequence towards
its limit. Since for a convergent sequence the spectral
radius of £ has to be less than one, then the Chebyshev
polynomials offer the means of weighting the projections.
When the ecigenvalues u; are distributed between 0 <
Jri] €| a| < 1 where ais a constant then the appropriate
linear combinations of some terms of the vector sequence
{®} may be obtained by means of the three-term recur-
rence relation

T,,__g(l/ a,)
T.(1/a)
where ¢ is the vector obtained by the iterative process
and T, is the Chebyshev polynomial of degree n in x de-
fined by T.(x) = cos (n cos™ z) in the range |z | < 1.
The Chebyshev acceleration of Richardson’s method

¢(n+l) = (I)(n) + B(ﬂ)r(n) (26)
where 8% is the residual vector at nth iteration, has the
form of the second-degree Richardson’s method

‘I)(n+l) = (I)(") + B(n)r(n) _|_ ,Y(n)s(n) (27)

where ¢™ = $™ — o= ig the displacement vector and
the coefficients are given by

Bt = g [6® — ¢o]  (25)

g = 4 cosh nt -

b — acosh (n 4 1)¢

_cosh (n — 1)t
" cosh (n + 1)¢

(28)

where cosh ¢ = (b + a)/(b — a), and a, b are the smallest
and largest eigenvalues of £. This process is nonstationary
since the values of 8 and v depend on n.

The Chebyshev acceleration of SSOR when applied for
a biharmonic problem causes its convergence to be twice
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as fast as SOR [27]. Young [157] estimates an order faster
convergence when this type of acceleration is applied to
some methods. A serious limitation on this method is posed
by the lower bound a for u; [14, p. 228]]. It is easy to find
a close estimate to the upper bound b but determination of
a is very difficult. It appears that the effectiveness of the
method depends mainly on a.

D. Gradient Methods
Let f($) be a quadratic function defined by

f(9) 2 ¢TA — 2¢™b + HTAT'D

where $T denotes transpose of ¢, and A and b correspond
to the quantities in Ax = b. When A is symmetric and
positive definite then the f($) takes its minimum value,
zero, at A—'b. Various minimization methods of f()
have been discussed [28]. Interesting combinations of
iterative methods (accelerated Jacobi, SSOR) with some
simple gradient methods and with the Chebyshev ac-
celeration have been discussed, and corresponding nu-
merical results on the biharmonic operator have been
presented [277].

The major feature of some of the gradient iterative
methods is that they lead to the solution in a finite
number of steps. One can use this powerful feature of the
gradient methods by combining the best minimization
techniques (see [287]) with the finite-element method for
Laplace’s and Poisson’s equations or several eigensolutions
of the Helmholtz equation. Such a combined method
should start from a direct or iterative solution of the
finite-element equations. The process then could proceed
with an iterative refinement by a finite-difference method
on a fine mesh, however, this intermediate step is not
necessary. Finally, the process could use one of the ef-
ficient gradient methods to find the minimum of (29) or
another objective function associated with the given
problem. These minimization iterations would start from
an initial vector close to the solution thus the minimum
would be obtained quickly and the process would be
reliable since (29) represents, in this case, a set of con-
centric hypersurfaces. It is noted, however, that the very
efficient gradient methods require existence of the first
and second derivatives of a function. The model function ¢
constructed in the finite element is continuous, but the
first derivative is discontinuous at the boundary between
the elements, thus the second derivative may be inde-
terminate at these boundaries. This restriction can be re-
moved by redefining the function to be continuous with
continuous derivatives. This model of ¢ describes the
actual ¢ more accurately than the finite-element model,
and, therefore, the gradient vector containing the first
partial derivatives and the Hessian matrix with second
partial derivatives can be constructed.

The number of iterations can be reduced considerably
when using the gradient methods but the amount of work
involved in computing the gradient vector and the
Hessian matrix may actually decrease the efficiency of the
method below that of other simpler methods.

(29)



226

E. Mesh Refinement

Another technique for accelerating the convergence is
mesh halving. In general, an application of bisection to all
the sides of triangles or rectangles as shown in Fig. 5
leads to a finer mesh. Since the convergence depends on
the starting values at the nodal points then a quick solu-
tion on a coarse mesh with a small number of nodes can
serve as the starting values for the next cycle of iterations.
This mesh halving can be repeated, leading to a better
first approximation to ¢ (see next section). The solution
obtained by mesh halving is faster than that carried on the
finer mesh only. '

The advantage of using bisection rather than other
techniques of the mesh refinement is that the bisection
maintains the same-angles in the new elements. This fact
removes the necessity of recomputing all the coefficients
in (8). The “old” nodes have exactly the same £’s, and the
coefficients for the “new’” nodes are chosen from the old k’s.

Suppose the discretization error of the particular
algorithm used in the finite-element solution of g is of
order || & ||» where || & || is the Chebyshev or some other
norm of the side length of all the triangles, and p is some
number. Let {:} be a sequence of solutions, generated by
the same algorithms, using a corresponding sequence
{ht} of decreasing k on the same region R. When {h;} — 0
then {¢} — o. Since {dr} converges monotonically to
¢ the following relation holds:

L erenll _ H waa fI?
el Al ll?

where the discretization error vector e at kth subdivision
of the elements is given by e: = ¢ — s

Any norm of e, including the vector itself, satisfies
(30) since p depends on the choice of the norm. Hence
one can extrapolate the 'sequence {¢z} from two or more
successive solution vectors ¢ obtained on two or more
triangulations with decreasing size of the elements. For
only two solutions (k = 1,2) one obtains the following
extrapolation formula

(30)

Fig. 5. Element subdivision by bisection of its sides.
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ox = Pl hell” = || I ||P
| Ao > — || ko ||?

(31)

where ¢z indicates the extrapolated vector, not necessarily
o. This difference is caused by various factors affecting
{dx} such as the cumulative roundoff errors, and the
residual error of ¢z. A better extrapolation formula results
from three solutions (k = 1,2,3)

_ o181 + 282 + §3s3

32
81+ S+ 85 (32)

03]

where

_ P = 1] 2 I
|| 2 f]?

(33)

81

and [, m, n are even permutation of 1,2,3.

The extrapolated values ¢z do not, in general, result in
¢ even though p is known in advance. However, when the
cumulative roundoff error is small and when the change
in || k|| is appropriately chosen, then a significant im-
provement in accuracy is achieved by this extrapolation.
An assessment of p will be given in the following section.

IV. Accuracy aAND CONVERGENCE

At the beginning of the previous section, two concepts of
convergence were introduced: 1) the convergence of ¢
to g, and 2) the convergence of successive estimates of
¢ to the model function solution ¢. Similarly, there are
two types of errors: 1) the accuracy of the model function
¢, related to the original function g, i.e., discretization
error, and 2) the accuracy of the estimate solution ¢
with respect to the actual function ¢, i.e., residual error.
This distinetion has been neglected in some cases and the
finite-element results presented were not as accurate as
expected [297].

A. Discretization Error

Recall that, by assumption, the function p is continuous
with continuous partial derivatives in a region E bounded
by T. When triangulation of R is employed and the first-
order polynomial is used to approximate p within each
triangle then the model polyhedral function ¢ is con-
tinuous with continuous first derivatives within each
triangle and discontinyous at junctions between the
triangles. The second partial derivatives vanish within
each triangle and may be, in general, infinite at the
junctions. We shall now show that a given function p
and its first partial derivatives may be approximated
arbitrarily closely by a polyhedral function ¢ based on a
suitable traingulation of R.

The strategy of assembling ¢ (see Section IT) guarantees
the continuity of ¢ and an appropriate “fitting”’ of ¢ to p.
Therefore, only an arbitrary closed triangular element
E, is considered in the proof. Let E, C R and the vertices
D.(%:;,y:) € E.. Let ¢; € p, that is, the values of the model
function at the vertices coincide with the exact function p.
This result is obtained by minimization of the functional
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(5) for each nodal point and for the linear interpolation
over E,. For higher approximations more points have
to satisfy this coincidence condition. It is noted that this
minimization process is similar to the least squares. It
~ might be possible to construct another functional (ob-
jective function) whose least pth minimization could
lead to a better approximation.

If one defines & and 8 as the largest side and the largest
angle of all triangles being associated with one triangle,
then it can be shown that the following conclusions hold:
the approximation for the derivatives is of order &

| V(¢ —p) | < (34)

cos

and the approximation for the function is of order h%:

lé—»p| < M2 (35)

cos 36
where M > 0 is a bound on p’’. Equations (34) and (35)
indicate that the function p and its derivatives p’ can be
approximated by the first-order polynomials based on a
triangular mesh arbitrarily close by taking a sufficiently
fine triangulation. Tt is noted that thin triangles give poor
approximation, since cos 360 — 0.

Equation (35) shows that the approximate solution ¢
converges to the exact solution p with the same order of
the convergence rate as in the case of the finite-difference
approximation. However, there is an important difference
between the two methods, evident from this analysis,
that is, this order of the convergence rate requires a
bounded second derivative of p whereas, in the finite-
difference formulation, a bound on the third-order deriva-
tive is required.

Equation (35) can be generalized by removing the
assumption that the largest angle 6 is associated with the
triangle having the longest side. In this case, however, the
derivation becomes complicated since the convergence
has to be expressed in terms of a north in the Sobolev
space of functions having generalized derivatives up to the
order k inclusive, on a compact support [1, p. 1387].
Using these norms, following Zldmal’s approach [6], it
can be shown that for second-order finite-element ap-
proximation to the generalized second-order partial
differentiation equations the following is true:

1
¢ —plls < k—— Mh? (36)
sin »

where the constant k does not depend on the triangulation,
v is the smallest angle of all triangles, s is the largest
side of all triangles, and the subscript at M indicates the
order of the derivatives that have to be bounded. The
subseript S indicates a norm in the Sobolev sense.

The approximation by cubie polynomials leads to the
following :

1
| & — plls < b—— M.pe (37)
. s y
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For the same problems, the finite-difference formulation
gives the convergence rates of the order of h and h?, re-
spectively.

For the biharmonic equation approximated by the
fifth-order polynomial one gets

l¢ —plls <k Meh*. (38)

sin? »

It is noted that the largest angle 6 in (35) can describe
a triangle better than the smallest angle », since the latter
indicates one small angle only, whereas the former always
implies fwo small angles when 6 — 180°.

B. Residual Error and Error Criteria

In order to terminate an iterative process at some
accuracy it is necessary to determine some measure of the
error. The simplest measure of the error is the residual
measure ez which indicates the fractional deviation of
V2™ from zero at nth iteration

en = H V(I)(n) ”E (39)

S lle™ e

This ratio employs the Euclidean norms with sieving
function, and it can be shown that it reduces to

v N
er = [ 2 (V)2 20 ¢, 2.

(40)
g=1 g=1
Another measure is defined by
(n) ™
er = / 97| ar / f 7 ar.  (a1)
ri9n ip r | 97 iy, :

It shows the flux imbalance between the flux calculated
along the entire boundary T' and the flux which enters the
region across I';.

Since the exact solution g is not known in general, it is
impossible to relate the error norms ez and er to an error
norm of the exact solution, e.g., ‘

L _lew =l
"= el

nevertheless some test problems for which the exact
solution is known can qualitatively relate (40) and (41)
to (42). The knowledge of this relation may be applied
to other problems. It has been experimentally found [5]
that, for homogeneous and inhomogeneous Dirichlet,
Cauchy, and Neumann problems, ez and er are approx-
imately proportional to e,, and they decrease when the
order of the approximating polynomial increases.

(42)

V. CoNCLUSIONS

An iterative approach to the finite-element method has
been presented in which no matrices and essentially only
the solution vector has to be stored. The relationship
between the finite-element, the finite-difference, and the
gradient methods is discussed.

Various techniques have been discussed for accelerating
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the convergence of the vector sequence to its limit which is
the exact solution to the modeling problem (residual
error), and accelerating the convergence of the sequence of
modeling solutions to its limit which is the exact solution
of the field problem (discretization error). Of these
techniques successive extrapolation is the most effective
in obtaining the limit of a vector sequence. In order to
obtain the limit of the sequence of modeling function
one must use successive mesh refinement. A technique for
element subdivision is presented which introduces new
elements with no new angles thereby simplifying the ob-
taining of the coefficients of the new assembly matrix
whose order is twice that of the original assembly matrix.

A discussion of discretization shows that the con-
vergence rate varies as A2 This permits to obtain an
optimal extrapolation technique for estimating the exact
solution with finite size elements.
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